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Graded cluster algebras

@ Recall that a cluster algebra is, in particular, an algebra with a
distinguished set of generators (cluster variables).

o A (Z-)grading of a cluster algebra is a grading of the underlying
algebra such that all the cluster variables are homogeneous.

o Cluster algebras are ‘generated’ by seeds (z, B), where
z=(x1,...,Zp,Tpy1,...,2y) and B is an n X r integer ‘exchange’
matrix. (The last n — r entries of x are ‘frozen’.)

@ We can specify a grading locally via G € Z" such that

B'G =0,
by deg(z;) = G;.
@ This compatibility condition ensures that the exchange relations
kak_szk_i_Haj zk
7.k>0 b7,k<0

are homogeneous. Then deg(z}) =37, ., Gi — G, =: G}, and we
can propagate via mutation.
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Cluster categories

@ A cluster category is, in particular, a 2-Calabi-Yau triangulated
category with cluster-tilting objects.

@ Such categories model the combinatorics of cluster algebras, with
cluster-tilting objects replacing the seeds.

o Let C be a cluster category, and let T'=;_, T; € C be a
cluster-tilting object. Write A = End¢(T")°P.

o Let F,G: C — mod A be given by F' = Hom¢(7T, —) and
G = Ext}(T, ) := Home(T, $—) respectively.

@ The cluster-tilting object 7' has mutations T = T/T}, @ T}, for each
1 <k <r, where T} is determined via exchange triangles

T, — X — T} — T, — Y — T), —
with X and Yy in add T (provided the quiver of A has no loops or
2-cycles at k).

@ This models the mutation of seeds in a cluster algebra, with the
exchange relations corresponding to these exchange triangles.
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Cluster characters

@ Let X € C be any object. Since T is cluster-tilting, there is a
distinguished triangle 7(X) — TP(X) — X — in C, where
m(X),p(X) € Z", and TV := @;_, T, such that

FTX) o prrX) S X 50

is exact in mod A. Write indp(X) = p(X) — m(X).

o Let By have (i, 7)-th entry dim Ext} (S;, S;) — dim Ext} (S;, S;),
where the S, = top F'T} are the simple A-modules.

@ The cluster character of X with respect to T is

T ind7 (X B + +
% = gindr( )Z)\vg e Clzt, ...,z ],
vEL"

where A\, ‘counts’ the number of dimension v submodules of GX (so
Ay = 0 unless, componentwise, 0 < v < dim GX).

@ In nice cases, the % for X rigid and indecomposable are then the
cluster variables of the cluster algebra generated by (x, Br), which we
say is categorified by C (or by the pair (C,T)).
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Graded cluster categories

o A grading of C (with respect to T') is G € Z" such that BL.G = 0.
e For X € C, define deg;(X) = indr(X) - G.

Proposition (Grabowski '15)

(i) degg(X) = deg(¢k) € Clat, ..., xF], where deg(z;) = Gi,

»r

(i) dege(Y) =degn(X) + deg(Z) whenever X —Y — Z — is a
distinguished triangle,

(iii) if Ty = X — T}, — and T}, — Y}, — T}, — are exchange triangles, then
deg(Xx) = deg(T}y) + deg(T}) = deg(Yy), and

(iv) forall X € C, degq(X) = —degq(EX).

e Parts (iii) and (iv) are simple consequences of (ii).

@ Part (iv) shows that objects of degree d are in bijection with those of
degree —d. This property translates to cluster algebras categorified by
a triangulated category C (in the sense above, so that cluster variables
correspond to all indecomposable rigid objects).
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A global definition
@ Unlike the original algebraic definition of grading, this categorical
version is ‘local’, relying on a choice of cluster-tilting object.
Proposition (Grabowski '15)

(v) The space of gradings for C is isomorphic to Homz(Ko(C),Z), via
G — degg.

@ This gives a global definition of a grading, equivalent to the local one
in terms of T

@ It also tells us how to write the same grading in terms of any
cluster-tilting object of C, irrespective of whether it can be obtained
from T by a finite sequence of mutations.

@ The proof is essentially by rephrasing a result of Palu ('09), who gives
a presentation of Ko(C) in terms of the generators [T;], in the
language of gradings.
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Frobenius cluster categories

@ A cluster algebra categorified by a cluster category as above
necessarily has square exchange matrices, so there are no frozen
variables. This does not apply to many cluster algebras in nature.

@ A Frobenius category is an exact category £ with enough projective
and injective objects, which coincide.

@ The indecomposable projective-injective objects appear as summands
of every cluster-tilting object, and play the role of the frozen variables.
Factoring out maps through these objects produces a triangulated
category £.

Definition

A Frobenius category £ is a Frobenius cluster category if it is
Krull-Schmidt, £ is 2-Calabi—Yau, it has cluster-tilting objects, and every
such object T satisfies gl. dim Endg(7)°P < 3.

@ While £ need not be Hom-finite, £ must be, as this is part of the
definition of 2-Calabi—Yau.
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Notes on assumptions

@ In the triangulated case, the assumption that gl. dim Endg(7")°P < 3
for all cluster-tilting objects would be totally unreasonable, and exclude
almost all examples. In the Frobenius case it is much more benign.

o Many examples of such categories are described in
Buan—lyama—Reiten—Scott '09 and several papers of
GeilR—Leclerc—Schrder, and we will see another family later.

o Pick a cluster-tilting object T'= ;" , T; € £, and write
A = Endg(T)°P, F = Homg(T, ) and G = Ext} (T, —). We number
summands so that T; is non-projective if and only if 7 < r.

@ The assumption that £ is Krull-Schmidt means that A = Endg(7)°P
has a complete set of indecomposable projectives given by P, = F'T;,
whose simple tops S; are a complete set of simples.

@ Since £ is 2-Calabi—Yau, essentially the same statements about
mutations and indices work as before, but with triangles replaced by
short exact sequences. One can only mutate the non-projective
indecomposable summands of T, i.e. those which are indecomposable
(i.e. non-zero) in £.
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Grothendieck groups and the Euler form

@ We will also assume that A is Noetherian; then the Grothendieck
group Kg(mod A) has basis [P;], dual to the basis [S;] of Ko(fd A)
under the Euler form

3 . .
(M,N) = (~1)"dim Ext}, (M, N).
i=0

@ Using the Euler form, we can write the standard cluster character
(with respect to T') on & as

n n
FX,5; —(v,5i
¢§:Hm§ -Si) g )\UH.TZ» <v >€C[mf,...,xf].
i=1 vezr  i=1

@ This is implied by a more general formula [Fu—Keller '10], using that
p.dim FX <1 for all X, that A is ‘internally 3-Calabi-Yau'
[Keller—Reiten '07, P '15], and that (M, S;) depends only on
v =dim M when M is a submodule of GX [Fu—Keller '10].
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Graded Frobenius cluster categories

@ The algebra A has a canonical quotient A = Endg(T")°P given by
factoring out maps through the projective summands of T". The simple
A-modules are S; for i < 7.

@ Since A is finite-dimensional, the class of any A-module in Kq(mod A)
lies in the span of these r simple modules.

o A grading for the Frobenius cluster category £ is G € Ko(fd A) such
that

(M,G) =0
for all M € mod A.
@ As before, let Bt have entries

(Br)ij = dim Ext} (S;, S;) — dim Ext (S;, Si)
for1 <i<mnand1<j<r. Then, again by internal Calabi-Yau
symmetry, we have
(Br)ji = —(Sj, Si),
so G is a grading if and only if BL.G = 0 (writing G in the basis of
simples).
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Basic properties

@ Forany X €&, let deg(X) = (FX,G).

@ As with the compatibility condition, this can be written as
degn(X) = indp(X) - G, where indp(X) = p(X) — m(X) is defined
by the existence of an exact sequence

0— 77X 5 P 5 X 0.

@ However, the equivalent ‘coordinate-free’ definitions using the
Grothendieck groups of A are better adapted to our arguments.

Proposition (GP '16)
(i) degs(X) = deg(pk), where deg(z;) = (P;, G), or equivalently
G =Y, deg(z;)[Si] when expressed in the basis of simples,

(ii) dege(Y) = dege(X) + deg(Z) whenever 0 - X —Y — Z — 0 is an
exact sequence, and

(iii) if0 = Tp = X = T}, — 0 and 0 = T}, — Yi, — T}, — 0 are exchange
sequences, then deg(Xy) = deg(Ty) + deg(T}) = deg(Y).
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A global definition

@ We again have a statement linking gradings to the Grothendieck group
of the categorification.

Theorem (GP '16)

The space of gradings for € is isomorphic to Homz(Ko(E),Z), via
G— degG

@ Again we obtain a global definition, allowing us to write any grading in
terms of an arbitrary cluster-tilting object.

@ The proof again uses ideas of Palu, but is more than just a translation.
Palu gives an exact sequence

Ko(H2 . (add T)) = Ko(H"(add T)) — Ko(D"(£)) = 0
which we show is isomorphic to
Ko(mod A) %+ Ko(mod A) — Ko(&) — 0.

The claim follows by computing Homz (1), Z) explicitly enough to see
that its kernel is the space of gradings.
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Examples of gradings

@ One powerful feature of this theorem is that it allows us to check that
some piece of homological data is a grading by checking that it is
additive on exact sequences, which is typically much easier than
checking compatibility with an exchange matrix.

@ Conversely, it explains how to use an exchange matrix to get an easy
computation of the rank of the Grothendieck group.

@ As an example, let £ be Hom-finite, and let P € £ be
projective-injective. Then dim Homg (P, —) and dim Homg(—, P)
both define gradings, since the functors involved are exact.

o If £ C modIl, with the inherited exact structure, then the dimension
vectors of objects of £ as II-modules give (multi-)gradings.

e Warning: under our assumptions (including Noetherianity of A), any
Frobenius cluster category embeds into a module category as above
[lyama—Kalck—-Wemyss—Yang '14]. But these embeddings are not
unique, and so one can potentially treat objects of £ as modules over
different algebras, resulting in different dimension vectors.
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Grassmannian cluster categories

@ A particularly interesting class of cluster algebras are the cluster
structures on the coordinate rings of Grassmannians G} of k-planes in
C™ [Scott '06], in which all Pliicker coordinates appear as cluster
variables (but there are usually more).

@ These structures have been categorified [Jensen—King—Su '16] by
categories CM(A), where A is the completed path algebra of the
quiver

NNy
i

(drawn for n = 5) modulo relations zy = yx and z* = y" . The
centre of A is Z = C[t]] for t = xy.
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The rank of a module

@ One can show [P '15] that CM(A) is a Frobenius cluster category, and
the endomorphism algebras of its cluster-tilting objects are Noetherian
(but not finite-dimensional).

@ An A-module is Cohen—Macaulay if and only if it is free and finitely
generated as a Z-module. In particular, each object X € CM(A) has
a well-defined integer rank as a Z-module, and such ranks are additive
on exact sequences, thus giving a grading.

o Taken literally, these ranks are always multiples of n, so we define
rk X by dividing out n from the ‘honest’ rank.

@ The corresponding grading on the cluster algebra, which is the
coordinate ring of the Grassmannian and thus generated by Pliicker
coordinates, is given by the degree of an element as a polynomial in
these coordinates.

@ In particular, there are precisely (z) degree 1 cluster variables, which
are the Pliicker coordinates themselves.
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The Grothendieck group

@ Jensen—King—Su calculate the Grothendieck group of CM(A), showing
that it is isomorphic to
n
Z'k)={veZ":> v €KL}
i=1
@ This lattice may also be realised as the root lattice of the Kac—Moody
Lie algebra associated to the graph Jj

@ A basis of simple roots is
ai:€i+1—6i,1§i§n—1 ﬁ[n]:€1+"'+€k,

and under the isomorphism of Z" (k) with Ko(CM(A)), the function
rk corresponds to the function giving the 3,-coordinate.
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Open questions

@ There are still many unanswered questions about the grading of a
general Grassmannian cluster algebra by Pliicker degree, such as:

> are the degrees of cluster variables unbounded?

» does every integer value appear as a degree?

» how many cluster variables are there in each degree?
although these are beginning to be addressed [Booker-Price].

e In finite types (k,n) € {(1,n),(2,n),(3,6),(3,7),(3,8)}, i.e. when
the graph Jj,,, is a Dynkin diagram, the number of cluster variables of
degree d is d times the number of Jj, ,,-roots with 3, -coefficient d.

@ Since in these cases there are finitely many cluster variables, their
degrees must be bounded; the maximal degrees are 1, 1, 2, 2 and 3
respectively.

@ The formula in terms of Jj, ,,-roots does not hold in infinite type
however; in the case (3,9) there are more degree 3 cluster variables
than this root system predicts.

@ We hope that having a categorical interpretation of the grading may
open these problems up to attack by representation theoretic methods.
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