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Graded cluster algebras
Recall that a cluster algebra is, in particular, an algebra with a
distinguished set of generators (cluster variables).
A (Z-)grading of a cluster algebra is a grading of the underlying
algebra such that all the cluster variables are homogeneous.
Cluster algebras are ‘generated’ by seeds (x,B), where
x = (x1, . . . , xr, xr+1, . . . , xn) and B is an n× r integer ‘exchange’
matrix. (The last n− r entries of x are ‘frozen’.)
We can specify a grading locally via G ∈ Zn such that

BtG = 0,

by deg(xi) = Gi.
This compatibility condition ensures that the exchange relations

xkx
′
k =

∏
bik>0

xbiki +
∏
bik<0

x−biki

are homogeneous. Then deg(x′k) =
∑

bik>0Gi −Gk =: G′k, and we
can propagate via mutation.
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Cluster categories
A cluster category is, in particular, a 2-Calabi–Yau triangulated
category with cluster-tilting objects.
Such categories model the combinatorics of cluster algebras, with
cluster-tilting objects replacing the seeds.
Let C be a cluster category, and let T =

⊕r
i=1 Ti ∈ C be a

cluster-tilting object. Write Λ = EndC(T )op.
Let F,G : C → mod Λ be given by F = HomC(T,−) and
G = Ext1

C(T,−) := HomC(T,Σ−) respectively.
The cluster-tilting object T has mutations µkT = T/Tk ⊕ T ′k for each
1 ≤ k ≤ r, where T ′k is determined via exchange triangles

Tk → Xk → T ′k → T ′k → Yk → Tk →

with Xk and Yk in addT (provided the quiver of Λ has no loops or
2-cycles at k).
This models the mutation of seeds in a cluster algebra, with the
exchange relations corresponding to these exchange triangles.
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Cluster characters
Let X ∈ C be any object. Since T is cluster-tilting, there is a
distinguished triangle Tm(X) → T p(X) → X → in C, where
m(X), p(X) ∈ Zr, and T v :=

⊕r
i=1 T

vi
i , such that

FTm(X) → FT p(X) → FX → 0

is exact in mod Λ. Write indT (X) = p(X)−m(X).
Let BT have (i, j)-th entry dim Ext1

Λ(Si, Sj)− dim Ext1
Λ(Sj , Si),

where the Sk = topFTk are the simple Λ-modules.
The cluster character of X with respect to T is

ϕTX = xindT (X)
∑
v∈Zr

λvx
BT v ∈ C[x±1 , . . . , x

±
r ],

where λv ‘counts’ the number of dimension v submodules of GX (so
λv = 0 unless, componentwise, 0 ≤ v ≤ dimGX).
In nice cases, the ϕTX for X rigid and indecomposable are then the
cluster variables of the cluster algebra generated by (x,BT ), which we
say is categorified by C (or by the pair (C, T )).
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Graded cluster categories
A grading of C (with respect to T ) is G ∈ Zr such that Bt

TG = 0.
For X ∈ C, define degG(X) = indT (X) ·G.

Proposition (Grabowski ’15)

(i) degG(X) = deg(ϕT
X) ∈ C[x±1 , . . . , x

±
r ], where deg(xi) = Gi,

(ii) degG(Y ) = degG(X) + degG(Z) whenever X → Y → Z → is a
distinguished triangle,

(iii) if Tk → Xk → T ′k → and T ′k → Yk → Tk → are exchange triangles, then
deg(Xk) = deg(Tk) + deg(T ′k) = deg(Yk), and

(iv) for all X ∈ C, degG(X) = −degG(ΣX).

Parts (iii) and (iv) are simple consequences of (ii).
Part (iv) shows that objects of degree d are in bijection with those of
degree −d. This property translates to cluster algebras categorified by
a triangulated category C (in the sense above, so that cluster variables
correspond to all indecomposable rigid objects).
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A global definition

Unlike the original algebraic definition of grading, this categorical
version is ‘local’, relying on a choice of cluster-tilting object.

Proposition (Grabowski ’15)

(v) The space of gradings for C is isomorphic to HomZ(K0(C),Z), via
G 7→ degG.

This gives a global definition of a grading, equivalent to the local one
in terms of T .
It also tells us how to write the same grading in terms of any
cluster-tilting object of C, irrespective of whether it can be obtained
from T by a finite sequence of mutations.
The proof is essentially by rephrasing a result of Palu (’09), who gives
a presentation of K0(C) in terms of the generators [Ti], in the
language of gradings.
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Frobenius cluster categories
A cluster algebra categorified by a cluster category as above
necessarily has square exchange matrices, so there are no frozen
variables. This does not apply to many cluster algebras in nature.
A Frobenius category is an exact category E with enough projective
and injective objects, which coincide.
The indecomposable projective-injective objects appear as summands
of every cluster-tilting object, and play the role of the frozen variables.
Factoring out maps through these objects produces a triangulated
category E .

Definition
A Frobenius category E is a Frobenius cluster category if it is
Krull–Schmidt, E is 2-Calabi–Yau, it has cluster-tilting objects, and every
such object T satisfies gl.dim EndE(T )op ≤ 3.

While E need not be Hom-finite, E must be, as this is part of the
definition of 2-Calabi–Yau.
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Notes on assumptions
In the triangulated case, the assumption that gl.dim EndE(T )op ≤ 3
for all cluster-tilting objects would be totally unreasonable, and exclude
almost all examples. In the Frobenius case it is much more benign.
Many examples of such categories are described in
Buan–Iyama–Reiten–Scott ’09 and several papers of
Geiß–Leclerc–Schröer, and we will see another family later.
Pick a cluster-tilting object T =

⊕n
i=1 Ti ∈ E , and write

Λ = EndE(T )op, F = HomE(T,−) and G = Ext1
E(T,−). We number

summands so that Ti is non-projective if and only if i ≤ r.
The assumption that E is Krull–Schmidt means that Λ = EndE(T )op

has a complete set of indecomposable projectives given by Pi = FTi,
whose simple tops Si are a complete set of simples.
Since E is 2-Calabi–Yau, essentially the same statements about
mutations and indices work as before, but with triangles replaced by
short exact sequences. One can only mutate the non-projective
indecomposable summands of T , i.e. those which are indecomposable
(i.e. non-zero) in E .

Matthew Pressland (MPIM Bonn) Graded Frobenius cluster categories 20.10.16



Grothendieck groups and the Euler form
We will also assume that Λ is Noetherian; then the Grothendieck
group K0(mod Λ) has basis [Pi], dual to the basis [Si] of K0(fd Λ)
under the Euler form

〈M,N〉 =

3∑
i=0

(−1)i dim ExtiΛ(M,N).

Using the Euler form, we can write the standard cluster character
(with respect to T ) on E as

ϕTX =

n∏
i=1

x
〈FX,Si〉
i

∑
v∈Zr

λv

n∏
i=1

x
−〈v,Si〉
i ∈ C[x±1 , . . . , x

±
n ].

This is implied by a more general formula [Fu–Keller ’10], using that
p.dimFX ≤ 1 for all X, that Λ is ‘internally 3-Calabi–Yau’
[Keller–Reiten ’07, P ’15], and that 〈M,Si〉 depends only on
v = dimM when M is a submodule of GX [Fu–Keller ’10].
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Graded Frobenius cluster categories
The algebra Λ has a canonical quotient Λ = EndE(T )op given by
factoring out maps through the projective summands of T . The simple
Λ-modules are Si for i ≤ r.
Since Λ is finite-dimensional, the class of any Λ-module in K0(mod Λ)
lies in the span of these r simple modules.
A grading for the Frobenius cluster category E is G ∈ K0(fd Λ) such
that

〈M,G〉 = 0

for all M ∈ mod Λ.
As before, let BT have entries

(BT )ij = dim Ext1
Λ(Si, Sj)− dim Ext1

Λ(Sj , Si)

for 1 ≤ i ≤ n and 1 ≤ j ≤ r. Then, again by internal Calabi–Yau
symmetry, we have

(BT )ji = −〈Sj , Si〉,
so G is a grading if and only if Bt

TG = 0 (writing G in the basis of
simples).
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Basic properties
For any X ∈ E , let degG(X) = 〈FX,G〉.
As with the compatibility condition, this can be written as
degG(X) = indT (X) ·G , where indT (X) = p(X)−m(X) is defined
by the existence of an exact sequence

0→ Tm(X) → T p(X) → X → 0.

However, the equivalent ‘coordinate-free’ definitions using the
Grothendieck groups of Λ are better adapted to our arguments.

Proposition (GP ’16)

(i) degG(X) = deg(ϕT
X), where deg(xi) = 〈Pi, G〉, or equivalently

G =
∑n

i=1 deg(xi)[Si] when expressed in the basis of simples,

(ii) degG(Y ) = degG(X) + degG(Z) whenever 0→ X → Y → Z → 0 is an
exact sequence, and

(iii) if 0→ Tk → Xk → T ′k → 0 and 0→ T ′k → Yk → Tk → 0 are exchange
sequences, then deg(Xk) = deg(Tk) + deg(T ′k) = deg(Yk).
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A global definition
We again have a statement linking gradings to the Grothendieck group
of the categorification.

Theorem (GP ’16)
The space of gradings for E is isomorphic to HomZ(K0(E),Z), via
G 7→ degG.

Again we obtain a global definition, allowing us to write any grading in
terms of an arbitrary cluster-tilting object.
The proof again uses ideas of Palu, but is more than just a translation.
Palu gives an exact sequence

K0(Hb
E-ac(addT ))→ K0(Hb(addT ))→ K0(Db(E))→ 0

which we show is isomorphic to

K0(mod Λ)
ψ−→ K0(mod Λ)→ K0(E)→ 0.

The claim follows by computing HomZ(ψ,Z) explicitly enough to see
that its kernel is the space of gradings.
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Examples of gradings
One powerful feature of this theorem is that it allows us to check that
some piece of homological data is a grading by checking that it is
additive on exact sequences, which is typically much easier than
checking compatibility with an exchange matrix.
Conversely, it explains how to use an exchange matrix to get an easy
computation of the rank of the Grothendieck group.
As an example, let E be Hom-finite, and let P ∈ E be
projective-injective. Then dim HomE(P,−) and dim HomE(−, P )
both define gradings, since the functors involved are exact.
If E ⊆ mod Π, with the inherited exact structure, then the dimension
vectors of objects of E as Π-modules give (multi-)gradings.
Warning: under our assumptions (including Noetherianity of Λ), any
Frobenius cluster category embeds into a module category as above
[Iyama–Kalck–Wemyss–Yang ’14]. But these embeddings are not
unique, and so one can potentially treat objects of E as modules over
different algebras, resulting in different dimension vectors.
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Grassmannian cluster categories
A particularly interesting class of cluster algebras are the cluster
structures on the coordinate rings of Grassmannians Gnk of k-planes in
Cn [Scott ’06], in which all Plücker coordinates appear as cluster
variables (but there are usually more).
These structures have been categorified [Jensen–King–Su ’16] by
categories CM(A), where A is the completed path algebra of the
quiver

•

x

y

•
x

y

•
x

y

•

x

y

•x

y

5

4

3 2

1

(drawn for n = 5) modulo relations xy = yx and xk = yn−k. The
centre of A is Z = C[[t]] for t = xy.
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The rank of a module

One can show [P ’15] that CM(A) is a Frobenius cluster category, and
the endomorphism algebras of its cluster-tilting objects are Noetherian
(but not finite-dimensional).
An A-module is Cohen–Macaulay if and only if it is free and finitely
generated as a Z-module. In particular, each object X ∈ CM(A) has
a well-defined integer rank as a Z-module, and such ranks are additive
on exact sequences, thus giving a grading.
Taken literally, these ranks are always multiples of n, so we define
rkX by dividing out n from the ‘honest’ rank.
The corresponding grading on the cluster algebra, which is the
coordinate ring of the Grassmannian and thus generated by Plücker
coordinates, is given by the degree of an element as a polynomial in
these coordinates.
In particular, there are precisely

(
n
k

)
degree 1 cluster variables, which

are the Plücker coordinates themselves.
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The Grothendieck group
Jensen–King–Su calculate the Grothendieck group of CM(A), showing
that it is isomorphic to

Zn(k) =
{
v ∈ Zn :

n∑
i=1

vi ∈ kZ
}
.

This lattice may also be realised as the root lattice of the Kac–Moody
Lie algebra associated to the graph Jk,n:

•
1

•
k

•
n− 1

•n

A basis of simple roots is

αi = ei+1 − ei, 1 ≤ i ≤ n− 1 β[n] = e1 + · · ·+ ek,

and under the isomorphism of Zn(k) with K0(CM(A)), the function
rk corresponds to the function giving the β[n]-coordinate.
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Open questions
There are still many unanswered questions about the grading of a
general Grassmannian cluster algebra by Plücker degree, such as:

I are the degrees of cluster variables unbounded?
I does every integer value appear as a degree?
I how many cluster variables are there in each degree?

although these are beginning to be addressed [Booker-Price].
In finite types (k, n) ∈ {(1, n), (2, n), (3, 6), (3, 7), (3, 8)}, i.e. when
the graph Jk,n is a Dynkin diagram, the number of cluster variables of
degree d is d times the number of Jk,n-roots with β[n]-coefficient d.
Since in these cases there are finitely many cluster variables, their
degrees must be bounded; the maximal degrees are 1, 1, 2, 2 and 3
respectively.
The formula in terms of Jk,n-roots does not hold in infinite type
however; in the case (3, 9) there are more degree 3 cluster variables
than this root system predicts.
We hope that having a categorical interpretation of the grading may
open these problems up to attack by representation theoretic methods.
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