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We begin with a dimer model D
(a bipartite plabic graph) in the disc.

The dimer model should be consistent,
meaning that this strands obtained
by following the rules of the road
form a Postnikov diagram.

The only non-automatic condition here is
that strands which cross twice should be
oppositely oriented between these crossings—this also rules out closed strands
in the interior.

The dimer model has a chirality k “ pk‚, k˝q with k‚ ` k˝ “ n, the number of
boundary marked points, and a permutation σD of these points.

This data determines a number of further geometric and algebraic objects,
which we will explore.
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The quiver
1

2

3

4
5

6

7
The dimer model D cuts the disk
into regions, and thus determines
a quiver QD with

(Q0) vertices corresponding to the
regions

(Q1) arrows corresponding to edges,
oriented with the black vertex on
the left.

The vertices and arrows on the boundary—marked in blue and called
frozen—sometimes play a different role to the others.

In the Postnikov diagram, the vertices correspond to alternating regions, and
the arrows to crossings, with their natural orientation.
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A cluster algebra

The permutation σD is a Grassmann permutation, and hence determines a
particular open positroid subvariety ΠpσDq Ď Grnk‚ of the Grassmannian of
k‚-dimensional subspaces of Cn [Postnikov].

It also determines a cluster algebra AD, with invertible frozen variables, via
the quiver QD.

Theorem (Serhiyenko–Sherman-Bennett–Williams, Galashin–Lam)

There is an isomorphism AD
„
Ñ CrΠpσDqs, mapping the initial cluster

variables to restrictions of Plücker coordinates.

For σD : i ÞÑ i` k˝ mod n (the uniform permutation), the variety ΠpσDq is
dense in Grnk‚ , and the cluster algebra with non-invertible frozen variables
attached to QD is isomorphic to the homogeneous coordinate ring CrxGr

n

k‚s.
[Scott]

In this case, Jensen–King–Su have categorified the cluster algebra—our aim is
to extend this to more general positroid varieties.



A non-commutative algebra 1
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The dimer model D gives QD a
determined set of ‚-cycles and ˝-cycles
(bounding faces).

Thus, letting Z “ Crrtss, we can
consider matrix factorisations on QD:
representations with free Z-modules
at each vertex, all having the same fixed
rank, and in which each ‚- and ˝-cycle
acts by t. (When the rank is 1, these are given by perfect matchings.)

When D is connected as a graph (equivalently |QD| is a topological disc)
these are precisely the AD-modules free over Z, where AD is the C-algebra
determined by the following relations on Q:

Each non-boundary (green) arrow a can be completed to either a ‚-cycle or a
˝-cycle by unique paths p‚a and p˝a; we impose each relation p‚a “ p˝a.

This is an example of a frozen Jacobian algebra, for the potential
W “

ř

p‚-cyclesq ´
ř

p˝-cyclesq.
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The boundary algebra

Let e “ e2 P AD be the sum of vertex idempotents at boundary vertices, and
write BD “ eADe for the boundary algebra.

Theorem (Jensen–King–Su, Baur–King–Marsh)
When σD is the uniform permutation, the category

GPpBDq “ tX P modBD : Extą0
BD
pX,BDq “ 0u

categorifies the cluster algebra AD.

Note: this presentation is historically backwards. In practice, Jensen–King–Su
proved the above theorem for an explicitly defined ‘circle algebra’ Ck,
depending only on the chirality, which Baur–King–Marsh (slightly) later
showed is isomorphic to BD whenever σD is the uniform permutation.

With hindsight, we can try to repeat this trick, this time using the boundary
algebra description of BD as the (now more general) definition.



Categorification

Theorem
Let D be a connected consistent dimer model in the disc, with dimer algebra
A “ AD and boundary algebra B “ BD. Then
(1) B is Iwanaga–Gorenstein of Gorenstein dimension ď 3; that is, B is

Noetherian and injdimBB, injdimBB ď 3. In particular GPpBq is a
Frobenius category.

(2) The stable category GPpBq “ GPpBq{projB is a 2-Calabi–Yau
triangulated category.

(3) A “ EndBpeAq
op and eA P GPpBq is cluster-tilting, that is

addpeAq “ tX P GPpBq : Ext1
BpX, eAq “ 0u.

This theorem follows from the following facts about the pair pA, eq:

(1) A is Noetherian,

(2) A{AeA is finite-dimensional, and

(3) A is internally bimodule 3-Calabi–Yau with respect to e.



Internally Calabi–Yau algebras

The definition of A being internally bimodule 3-Calabi–Yau algebra is technical,
and we omit it, but it implies that gl.dimA ď 3 and that

ExtiApX,Y q “ Ext3´i
A pY,Xq˚

for X,Y P modA with eY “ 0.

The result is analogous to Broomhead’s theorem that a consistent dimer model
on the torus is bimodule 3-Calabi–Yau in the usual (no boundary) sense.

The proof that AD has this property uses that it is a frozen Jacobian
algebra—hence the restriction to D connected—and the thinness property
(eiAej – Z) obtained with Çanakçı and King (which also implies the required
Noetherianity / finite-dimensionality).

Warning
When σD is the uniform permutation, GPpBDq “ CMpBDq, i.e. it consists of
those BD-modules free and finitely generated over Z. In general, GPpBDq is
a proper full subcategory of CMpBDq.



Relationship to the JKS category

Proposition (Çanakçı–King–P)
For D of chirality k, there is a fully faithful functor CMpBDq Ñ CMpCkq,
recalling that Ck is JKS’s circle algebra for the uniform permutation.

The cluster-tilting object eAD P GPpBDq is sent to to a direct sum of rank 1
(Plücker) modules MJ , for the labels J attached to alternating regions of the
Postnikov diagram of D by labelling regions using the sources of strands.

The functor in the first statement arises from a natural map Ck Ñ BD (not
surjective in general).

The second statement follows from the fact that restricting the projective
AD-module at vertex i to BD and then to Ck produces the rank 1 module
MJ , for J is obtained by the given rule.

What of target labelling? By duality there is another Frobenius category
GIpBDq Ă CMpBDq containing the cluster tilting object HomZpADe, Zq,
which restricts to the direct sum of the rank 1 modules coming from this
labelling rule.



Example

In the running example, GPpBDq is (inside CMpCkq) as shown:

234 345
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245 346 257
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Application to twists with İ. Çanakçı + A. King

Fix D consistent and connected, and write A “ AD, B “ BD,
F “ HomBpeA,´q, and G “ Ext1

BpeA,´q.

To X P CMpBq we attach the Laurent polynomial

ΦX “ xrFXs
ÿ

EďGX

x´rEs

where rM s is the class of M in K0pAq (written in the basis of indecomposable
projectives), and infinite sums are computed using Euler characteristics of
quiver Grassmannians. This is the CC-formula, computing cluster monomials
from rigid objects.

If PX Ñ X is a projective cover with kernel ΩX, there is an exact sequence

FPX Ñ FX Ñ GΩX Ñ 0,

and we write F 1X for the image of the left-hand map. Then

ΦΩX “ xrFPXs
ÿ

F 1XďNďFX

x´rNs



Application to twists with İ. Çanakçı + A. King

ΦΩX “ xrFPXs
ÿ

F 1XďNďFX

x´rNs

Proposition (Çanakçı–King–P)
Consider X “MJ (i.e. X P CMpBq restricts to this Ck-module). Then
tF 1MJ ď N ď FMJu is the set of perfect matching modules Nµ for
matchings µ of D with Bµ “ J .

This result uses the categorification theorem, specifically that FB “ eA and
GB “ 0.

It allows us to compare the CC-formula to the Marsh–Scott formula

MSpJq “ x´wtpDq
ÿ

µ:Bµ“J

xwtpµq

where wtpDq and wtpµq are combinatorially defined weights in K0pAq.



Application to twists with İ. Çanakçı + A. King

ΦΩX “ xrFPXs
ÿ

F 1XďNďFX

x´rNs MSpJq “ x´wtpDq
ÿ

µ:Bµ“J

xwtpµq

Theorem (Çanakçı–King–P)
For MJ P CMpBq, there is a canonical choice of projective cover
PMJ ÑMJ , inducing a canonical syzygy ΩMJ , for which

ΦΩMJ
“ MSpJq.

Under a suitable specialisation of the xi to Plücker coordinates, taking ΦMJ
to

the Plücker coordinate ∆J , the Laurent polynomial MSpJq evaluates to the
Marsh–Scott twist of ∆J . That is, Ω categorifies this twist.

The theorem is proved by computing a projective resolution of
each perfect matching A-module Nµ, from which it follows that
rFPMJ s ´ rNµs “ wtpµq ´ wtpDq for each perfect matching µ with Bµ “ J .



Thanks for listening!
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