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Postnikov diagrams 1
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7A Postnikov diagram D consists
of n oriented strands in an oriented disc,
connecting marked points t1, . . . , nu
around the boundary, and satisfying

(P0) Each marked point is the source of
one strand and the target of one strand.

(P1) The strands cross transversely,
pairwise, and finitely many times.

(P2) Moving along each strand, the
signs of its crossings with other strands alternate.

(P3) A strand does not cross itself.

(P4) If two strands cross twice, they are oriented in opposite directions
between these crossings.

D determines σD P Sn by mapping the source of each strand to its target. In
the example, σD “ p1, 6, 3qp2, 4, 7, 5q.
Note: In this talk, we do not restrict to the permutations i ÞÑ i ` k mod n.



The quiver
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7The strands of D cut the disc into
regions, such that the orientation
of strands around the boundary
of each region is either alternating,
clockwise, or anticlockwise.

D determines a quiver QD with

(Q0) vertices corresponding to the
alternating regions, and

(Q1) arrows corresponding to crossings of strands.

Some vertices and arrows are on the boundary, and will sometimes play a
different role to the others—we mark them in blue and call them frozen.
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A cluster algebra

The permutation σD is a Grassmann permutation, and hence determines a
particular positroid subvariety Π˝pσDq Ď Grn

k of the Grassmannian of
k-dimensional subspaces of Cn [Postnikov].

It aso determines a cluster algebra AD , with invertible frozen variables, via the
quiver QD .

Theorem (Serhiyenko–Sherman-Bennett–Williams, Galashin–Lam)
There is an isomorphism AD

„
Ñ CrΠ˝pσDqs, mapping the initial cluster

variables to restrictions of Plücker coordinates.

For σD : i ÞÑ i ` k mod n (the uniform permutation), the variety Π˝pσDq is
dense in Grn

k , and the cluster algebra with non-invertible frozen variables
attached to QD is isomorphic to the homogeneous coordinate ring CrxGr

n
k s.

[Scott]

In this case, Jensen–King–Su have categorified the cluster algebra—our aim is
to extend this to more general positroid varieties.



A non-commutative algebra 1
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The oriented regions of D are either
clockwise (˝) or anticlockwise (‚).

Thus QD has a determined set of
‚-cycles and ˝-cycles.

Let AD be the C-algebra determined
by QD with relations as follows:

Each non-boundary (green) arrow a
can be completed to either a ‚-cycle or a
˝-cycle by unique paths p‚a and p˝a ; we impose the relation p‚a “ p˝a for each a.

We call AD the dimer algebra of D.

This is an example of a frozen Jacobian algebra, for the potential
W “

ř

p‚-cyclesq ´
ř

p˝-cyclesq.

Technical note: we take the complete path algebra of QD over C, and the
quotient by the closure of the ideal generated by the given relations.
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Interlude: dimer models
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7Consider a bipartite graph drawn
in our disc, together with half-edges
connecting some nodes to the boundary
marked points.

This is called a dimer model, and it also
determines a quiver and dimer algebra.

This construction makes sense on
any oriented surface with or without
boundary.

Theorem (Broomhead)
The dimer algebra of a consistent dimer model on the torus is bimodule
3-Calabi–Yau.

The dimer also determines strands—on the disc, consistency means that these
strands are a Postnikov diagram. The dimer algebras constructed from the
Postnikov diagram and the dimer model coincide.
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The boundary algebra
Let e “ e2 P AD be the sum of vertex idempotents at boundary vertices, and
write BD “ eADe for the boundary algebra.

Theorem (Jensen–King–Su, Baur–King–Marsh)
When σD is the uniform permutation, the category

GPpBDq “ tX P modBD : Extą0
BD
pX ,BDq “ 0u

categorifies the cluster algebra AD .

Note: this presentation is historically backwards. In practice, Jensen–King–Su
proved the above theorem for an explicitly defined ‘circle algebra’ Cpk, nq,
depending only on the pair pk, nq, which Baur–King–Marsh (slightly) later
showed is isomorphic to BD whenever σD is the uniform permutation.

With hindsight, we can try to repeat this trick, this time using the boundary
algebra description of BD as the (now more general) definition.

We can do this providing D is connected.



Categorification

Theorem
Let D be a connected Postnikov diagram in the disc, with dimer algebra
A “ AD and boundary algebra B “ BD . Then
(1) B is Iwanaga–Gorenstein of Gorenstein dimension ď 3; that is, B is

Noetherian and injdim BB, injdimBB ď 3. In particular GPpBq is a
Frobenius category.

(2) The stable category GPpBq “ GPpBq{ projB is a 2-Calabi–Yau
triangulated category.

(3) A “ EndBpeAqop and eA P GPpBq is cluster-tilting, that is

addpeAq “ tX P GPpBq : Ext1
BpX , eAq “ 0u.

This theorem follows from the following facts about the pair pA, eq:

(1) A is Noetherian,

(2) A{AeA is finite-dimensional, and

(3) A is internally bimodule 3-Calabi–Yau with respect to e.



Internally Calabi–Yau algebras
The definition of A being internally bimodule 3-Calabi–Yau algebra is technical,
and we omit it, but it implies that gl. dimA ď 3 and that

Exti
ApX ,Y q “ D Ext3´i

A pY ,X q

for X ,Y P modA with eY “ 0. (D “ HomCp´,Cq)

The result for AD is analogous to Broomhead’s theorem for consistent dimer
models on the torus.

The proof that AD has this property uses that it is a frozen Jacobian algebra,
and the following thinness property which uses connectedness of D.

Lemma (Çanakçı–King–P)
Let D be a connected Postnikov diagram. Then AD has a central subalgebra
Z – Crrtss, and for each pair of vertices i and j, there is an isomorphism
ejAei – Z of Z-modules.

The required Noetherianity and finite-dimensionality also follow (more directly)
from this lemma.



Boundary algebras

Since the cluster algebra AD, and the positroid variety Π˝pσDq, depend only
on the permutation of σD , this should also be true of our category.

Proposition
If D and D1 are connected Postnikov diagrams with σD “ σD1 , then BD – BD1 ,
and so in particular GPpBDq » GPpBD1q.

This uses a result of Oh–Postnikov–Speyer; D and D1 as in the Proposition are
related by a sequence of local moves (which correspond to mutations of the
quiver and in the cluster algebra!) which affect the isomorphism class of AD,
but not of the subalgebra BD “ eADe.

The proof is really due to Baur–King–Marsh, who state the result for diagrams
with σD : i ÞÑ i ` k mod n.



The Jensen–King–Su category

We say a Postnikov diagram with n strands of ‘average length’ k has type
pk, nq. For example, if σD : i Ñ i ` k mod n then D the strands have
constant length k, so D has type pk, nq.

Note: Π˝pσDq Ď Grn
k for pk, nq the type of D.

Proposition (Çanakçı–King–P)
Let D be a diagram of type pk, nq. Then there is a canonical ring morphism
Cpk, nq Ñ BD , inducing a fully-faithful functor GPpBDq Ñ GPpCpk, nqq.

This means the categories we construct here all appear as full subcategories in
Jensen–King–Su’s Grassmannian cluster category, for the appropriate k and n.

To get the ring morphism: there is a canonical map Π Ñ BD for Π the
preprojective algebra of type Ãn´1, since AD is a frozen Jacobian algebra
whose frozen subquiver is an orientation of this graph, and we check that this
map factors over Cpk, nq, which is by definition a quotient of Π.



Example
In the running example, GPpBDq is as shown:

234 345

456
135
246 245 346 257

256
125 246 357

246

257 126 247 135
246

267 127 124

The names given to modules are as in Jensen–King–Su.



Advertising

17.09.20 (tomorrow), 2PM BST: FD-Seminar

Jenny August, on cluster categories for the infinite Grassmannian

21–25.09.20 and 05–09.10.20: LMS Autumn Algebra School

Many interesting lecture series!

In the second week, I will give a more gentle introduction to cluster algebras
and their categorification.

https://www.fd-seminar.xyz/
https://www.icms.org.uk/V_Algebra.php


Thanks for listening!
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