On categorification of g-vectors

joint work in progress with Xin Fang, Mikhail Gorsky, Yann Palu, and Pierre-Guy Plamondon

Matthew Pressland

University of Glasgow

ICRA 2022: Universidad de Buenos Aires

Slides: https://bit.ly/3SzZMPG

Definition 1: Coindex

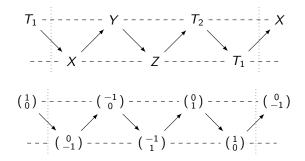
Let C be a Hom-finite Krull–Schmidt 2-Calabi–Yau triangulated category.

Let $T \in \mathcal{C}$ be a cluster-tilting object, meaning

$$\mathsf{add} \ \mathcal{T} = \{X \in \mathcal{C} : \mathsf{Ext}^1_\mathcal{C}(\mathcal{T}, X) := \mathsf{Hom}_\mathcal{C}(\mathcal{T}, \Sigma X) = 0\}.$$

Then for all $X \in C$ there exists a triangle $X \to T_1 \to T_0 \to \Sigma X$ with $T_0, T_1 \in \mathsf{add} T$.

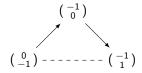
Define coind $_T(X) = [T_1] - [T_0] \in K_0(\text{add } T)$.



Definition 2: Projective presentations

Let A be a finite-dimensional algebra and $M \in \mod A$. Take a minimal projective presentation $P_1 \rightarrow P_0 \rightarrow M \rightarrow 0$.

Then the *g*-vector of M is $[P_1] - [P_0] \in K_0(\text{proj } A)$.



We will now see that for C and T as on the previous slide, and $A = \text{End}_{C}(T)^{\text{op}}$, these definitions are compatible.

Connection

Take $X \in C$, and choose a triangle $X \to T_1 \to T_0 \to \Sigma X$ to compute the coindex.

This yields an exact sequence

$$\mathsf{Hom}_\mathcal{C}(\,\mathcal{T},\,\mathcal{T}_1) o \mathsf{Hom}_\mathcal{C}(\,\mathcal{T},\,\mathcal{T}_0) o \mathsf{Ext}^1_\mathcal{C}(\,\mathcal{T},\,X) o 0$$

of $A = \operatorname{End}_{\mathcal{C}}(T)^{\operatorname{op}}$ -modules.

There are equivalences

$$\begin{split} & \mathsf{Hom}_{\mathcal{C}}(\mathcal{T},-)\colon \operatorname{add}\mathcal{T} \xrightarrow{\sim} \operatorname{proj} A, \quad \text{Yoneda} \\ & \mathsf{Ext}^1_{\mathcal{C}}(\mathcal{T},-)\colon \mathcal{C}/(\mathcal{T}) \xrightarrow{\sim} \operatorname{mod} A. \quad \text{Buan-Marsh-Reiten, Keller-Reiten, Koenig-Zhu,...} \end{split}$$

Thus the g-vector of $X \in \mathcal{C}$ is equal to the g-vector of $\text{Ext}^1_{\mathcal{C}}(\mathcal{T}, X) \in \text{mod } A$.

Aim

Enhance this relationship to an equivalence of 'categories of g-vectors'.

Extriangulated categories (Nakaoka-Palu '19)

Idea: additive categories with well-behaved 'extension groups' $\mathbb{E}(X, Y)$.

(0) Exact categories, triangulated categories ($\mathbb{E} = \mathsf{Ext}^1_{\mathcal{C}}$).

- (1) Extension closed subcategories of triangulated categories ($\mathbb{E} = \mathsf{Ext}^1_{\mathcal{C}}$).
- (2) 'Partial stabilisations' C/(P) for C Frobenius exact, P projective-injective $(\mathbb{E} = \mathsf{Ext}^1_{\mathcal{C}}).$
- (3) Ex-triangulated categories: Take a triangulated category C and choose (carefully) a subfunctor $\mathbb{E} \leq \mathsf{Ext}_{\mathcal{C}}^1$.

 $\label{eq:Carefully} \mbox{Carefully} = \mbox{making sure inflations and deflations are closed under composition.} \\ (\mbox{Herschend-Liu-Nakaoka})$

Remark

(3) was studied for exact categories by Auslander–Solberg, under the heading of relative homological algebra: the process preserves exactness (but not triangulatedness).

Harp (The Homotopy ARrow category of Projectives)

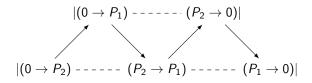
Let A be a finite-dimensional algebra. Then

$$\operatorname{harp} A := \{ P_1 \stackrel{arphi}{ o} P_0 : P_i \in \operatorname{proj} A \} / \operatorname{homotopy}.$$

We have harp $A \xrightarrow{\sim} \mathcal{K}^{[-1,0]}(\operatorname{proj} A) \hookrightarrow \mathcal{K}^{\mathrm{b}}(\operatorname{proj} A)$.

The image is extension-closed, and so harp A is naturally extriangulated.

Projective objects are those of the form $0 \rightarrow P$, and injectives of the form $P \rightarrow 0$. (Objects $P \xrightarrow{\sim} P$ are projective-injective, but also 0.)



Relative harp

Choose additionally $e = e^2 \in A$, and define

$$\operatorname{harp}_{e} A := \{ P_{1} \xrightarrow{\varphi} P_{0} \in \operatorname{harp} A : e \cdot \operatorname{coker} \varphi = 0 \}.$$

Note that $harp_0 A = harp A$.

For
$$A = \frac{1}{r} \underbrace{\frac{q}{p}}_{*} \underbrace{\frac{2}{p}}_{p} / (pq, qr) \text{ and } e = e_1 + e_2,$$

$$harp_e(A) = \underbrace{|(P_1 \to 0)|}_{----} \underbrace{|(P_2 \to 0)|}_{|(P_2 \to P_*) - ----} \underbrace{|(P_1 \to 0)|}_{|(P_2 \to P_*) - -----} \underbrace{|(P_* \to 0)|}_{|(P_2 \to P_*) - -----} \underbrace{|(P_* \to 0)|}_{|(P_* \to 0)|}$$

Proposition (FGPPP)

In harp_e(A), injectives are $P \rightarrow 0$, while projectives are $P \xrightarrow{\varphi} Q$ such that $P \in \text{add } Ae$. In particular, $Ae \rightarrow 0$ is projective-injective.

Main Theorem

Two situations:

- (1) C is the Amiot cluster category of a Jacobi-finite quiver with potential, with initial cluster-tilting object T.
- (2) C is a Krull–Schmidt stably 2-Calabi–Yau Frobenius exact category, with cluster-tilting object T.

Write $A = \text{End}_{\mathcal{C}}(\mathcal{T})^{\text{op}}$ with *e* corresponding to projective summands of \mathcal{T} (so e = 0 in case (1)).

Theorem (FGPPP)

In situations (1) and (2), there is a full and dense functor $G: C \to harp_e A$ given by

$$\mathit{GX} = \big(\operatorname{\mathsf{Hom}}_{\operatorname{\mathcal{C}}}(\operatorname{\mathcal{T}},\operatorname{\mathcal{T}}_1)
ightarrow \operatorname{\mathsf{Hom}}_{\operatorname{\mathcal{C}}}(\operatorname{\mathcal{T}},\operatorname{\mathcal{T}}_0)\big)$$

for $X \to T_1 \to T_0$ with $T_i \in \text{add } T$ either a carefully chosen triangle (1) or arbitrary short exact sequence (2). We have

$$\ker G = \begin{cases} (T \to \Sigma^{-1}T), & (1) \\ 0. & (2) \end{cases}$$

Preservation of structure

Give ${\mathcal C}$ the relative extriangulated structure ${\mathbb E}_{\mathcal T}$ with extriangles $X\to Y\to Z$ such that

$$\operatorname{coind}_T(Y) = \operatorname{coind}_T(X) + \operatorname{coind}_T(Z).$$

Proposition (Padrol–Palu–Pilaud–Plamondon, 19⁺, cf. Palu '08)

The injectives and projectives in $(\mathcal{C}, \mathbb{E}_T)$ are given respectively by (the preimage under stabilisation of) add T and add $\Sigma^{-1}T$ respectively.

Proposition (FGPPP)

If C is extriangulated and $\mathcal{I} \subseteq (inj \rightarrow proj)$ is an ideal, then C/\mathcal{I} is naturally extriangulated.

Theorem (FGPPP)

Using the extriangulated structure induced from \mathbb{E}_T on $\mathcal{C}/\ker G,$ we obtain an equivalence

$$\mathcal{C}/\ker G \xrightarrow{\sim} \operatorname{harp}_e A$$

of extriangulated categories.

Corollaries

Corollary

In case (1), if A is selfinjective then $(\mathcal{C}, \mathbb{E}_T) \simeq \operatorname{harp} A$.

Proof.

We have $\Sigma^2 T = T$ because A is selfinjective (Koenig–Zhu, Iyama–Oppermann) so $\operatorname{Hom}_{\mathcal{C}}(T, \Sigma^{-1}T) = \operatorname{Hom}_{\mathcal{C}}(T, \Sigma T) = 0$

because T is rigid.

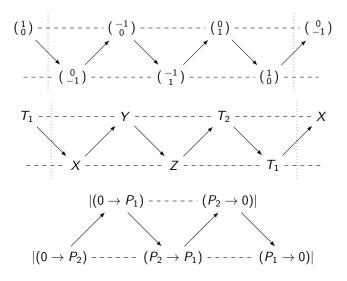
Corollary

In case (2), harp_e A is exact.

Proof.

Since C is exact, so is $(C, \mathbb{E}_T) \simeq harp_e(A)$ (Auslander–Solberg).

Example 1 (A_2 cluster category)



Example 2 (A_2 preprojective algebra)

