Perfect matching modules for dimer algebras

joint work with İlke Çanakçı and Alastair King

Matthew Pressland

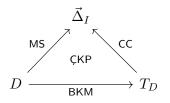
Universität Stuttgart

ICRA 2018 České vysoké učení technické v Praze / Univerzita Karlova

Setting

- Fix integers 1 ≤ k < n. We study the Grassmannian Gⁿ_k of k-subspaces of Cⁿ, and the coordinate ring C[Gⁿ_k] of its affine cone.
- The 'standard' generators of $\mathbb{C}[\hat{G}_k^n]$ are Plücker coordinates Δ_I for $I \in \binom{n}{k} = \{I \subseteq \{1, \dots, n\} : |I| = k\}.$
- By work of Scott, $\mathbb{C}[\hat{G}_k^n]$ has a cluster algebra structure, in which all Δ_I are cluster variables.
- This cluster algebra is categorified by Jensen, King and Su, via certain bipartite graphs called dimer models.
- For each $I \in {n \choose k}$, there is a cluster monomial $\vec{\Delta}_I \in \mathbb{C}[\hat{G}_k^n]$; a twisted Plücker coordinate.
- This function can be computed from a dimer model *D* in two ways.

Two formulae



- MS = Marsh-Scott formula, which computes $\vec{\Delta}_I$ (as a Laurent polynomial in some Plücker coordinates determined by the dimer D) combinatorially from D.
- BKM = Baur-King-Marsh associate to D a maximal rigid object T_D in the JKS cluster category.
- Applying CC = the Caldero-Chapoton cluster character with respect to T_D produces the same Laurent polynomial expression for $\vec{\Delta}_I$.
- We, i.e. ÇKP, explain representation-theoretically why these two computations are really 'the same'.

Dimer models

- Take a disc with marked points $1, \ldots, n$ around its boundary.
- A dimer *D* is a bipartite graph in the interior of the disc, together with *n* 'half-edges' connecting black nodes to these marked points.
- $\#\{\text{black nodes}\} \#\{\text{white nodes}\} = k$.
- D must be consistent: 'zig-zag paths form a Postnikov diagram'.
- A combinatorial rule (involving zig-zag paths) then attaches to each tile an element of ⁿ_k, and thus D determines a subset C(D) ⊆ ⁿ_k.
- For our applications, we restrict to the case that the boundary tiles are labelled by the *n* cyclic intervals in $\binom{n}{k}$, in which case $\{\Delta_I : I \in \mathcal{C}(D)\}$ is a cluster of $\mathbb{C}[\hat{G}_k^n]$.

The Marsh–Scott formula

- A perfect matching μ of D is a set of edges of D (including half-edges) such that every node of D is incident with exactly one edge of μ.
- Since D has k more black vertices than white, any perfect matching must include exactly k half-edges, and the so the boundary marked points adjacent to these half-edges form a set ∂µ ∈ ⁿ_k.
- The Marsh–Scott formula for $\vec{\Delta}_I$ is then

$$\vec{\Delta}_I = \sum_{\mu:\partial\mu=I} \Delta^{wt(\mu)}$$

for a vector $wt(\mu) \in \mathbb{Z}^{\mathcal{C}(D)}$ computed combinatorially from μ .

The JKS category

- D also determines an algebra A_D by taking the dual quiver, with relations $p_{\alpha}^+ = p_{\alpha}^-$ whenever there are paths p_{α}^+ and p_{α}^- completing an arrow α to a cycle around a black (+) and white (-) node.
- A_D is free of finite rank over a central subalgebra $Z \cong \mathbb{C}[[t]]$.
- Let e be the sum of vertex idempotents at the boundary tiles, and $B = eA_De$; this algebra is also free of finite rank over Z.

Theorem (Jensen-King-Su)

The category CM(B), of *B*-modules free of finite rank over *Z*, categorifies the cluster algebra $\mathbb{C}[\hat{G}_k^n]$. In particular, there is a bijection between isoclasses of rigid objects of CM(B) and cluster monomials of $\mathbb{C}[\hat{G}_k^n]$.

Theorem (Baur-King-Marsh)

The algebra *B* is independent of *D*, up to isomorphism. The *B*-module $T_D := eA_D$ is a maximal rigid object in CM(B), and $End_B(T_D)^{op} \cong A_D$.

The CC formula

- Fix a dimer model D, with corresponding maximal rigid object $T_D \in CM(B)$, and set of Plücker labels C(D).
- Let $F = \operatorname{Hom}_B(T_D, -)$ and $G = \operatorname{Ext}_B^1(T_D, -)$; both are functors $\operatorname{CM}(B) \to \operatorname{mod} A_D$.
- Then the Caldero-Chapoton map (which gives the JKS bijection) is

$$\operatorname{CC}(X) = \sum_{N \le GX} \Delta^{wt(N)} \qquad \left(\mathsf{cf. MS:} \ \vec{\Delta}_I = \sum_{\mu: \partial \mu = I} \Delta^{wt(\mu)} \right)$$

• Here $wt(N) \in \mathbb{Z}^{\mathcal{C}(D)}$ is computed from projective resolutions of the A_D -modules FX and N.

MS=CC

- Let $I \in {n \choose k}$ and let $M_I \in CM(B)$ be the object corresponding to the Plücker coordinate Δ_I ; these modules are explicitly described by JKS.
- Each M_I has a 'canonical' projective cover P_I , yielding an exact sequence

$$0 \longrightarrow \Omega M_I \longrightarrow P_I \longrightarrow M_I \longrightarrow 0,$$

Proposition (Geiß–Leclerc–Schröer, Çanakçı–King–P) $CC(\Omega M_I) = \vec{\Delta}_I.$

• Hence, using the two formulae, we have

$$\sum_{\mu:\partial\mu=I} \Delta^{wt(\mu)} = \vec{\Delta}_I = \sum_{N \le G\Omega M_I} \Delta^{wt(N)}$$

• Aim: use equality of the outer terms to deduce representation-theoretic information about A_D and B.

Perfect matching modules

$$\sum_{\mu:\partial\mu=I} \Delta^{wt(\mu)} = \sum_{N \le G\Omega M_I} \Delta^{wt(N)}$$

- Let μ be a perfect matching of D.
- Define an A_D -module \hat{N}_{μ} by placing a copy of $Z = \mathbb{C}[[t]]$ at each vertex, and having arrows act by multiplication with t if they are dual to edges in μ , and by the identity otherwise.
- Applying F to the exact sequence defining ΩM_I gives an exact sequence

$$FP_I \xrightarrow{f} FM_I \xrightarrow{g} G\Omega M_I \longrightarrow 0$$

Theorem (Çanakçı–King–P, 'MS=CC')

The submodules of FM_I containing im f are precisely the \hat{N}_{μ} with $\partial \mu = I$. Thus, setting $N_{\mu} := g\hat{N}_{\mu}$, the assignment $\mu \mapsto N_{\mu}$ is a bijection $\{\mu : \partial \mu = I\} \xrightarrow{\sim} \{N \leq G\Omega M_I\}$. Moreover, $wt(\mu) = wt(N_{\mu})$.