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The Laurent phenomenon

This did not have to work!

1 1 1 1
1+ x 1+x
X1 —_— —_—
X1 X2
1+ x; 1+x1+x
— X2 B — X1
X2 X1X2
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The Laurent phenomenon

This did not have to work!

1 1 1 1 1
1+ x 1+x
X1 - - X2
X1 X2
14+x 1+x+x 1+x
it X It xt 1rx
X2 X1X2 X1
1 1 1 1
A sample calculation:
14 1+ x +x
X1X0 - X1(1+X1+X2+X1X2) . (1+X1)(1+X2) - 14+ x1
1+x - x1x2(1 + x2) o x2(1 4 x2) T X
Xy

This Laurent phenomenon implies we get integer values at x; = 1.
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A sample calculation:

14 1+ x +x
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Laurent phenomenon

Fomin—Zelevinsky define a cluster algebra A via recursively computed
generators, called cluster variables, in Q(x, ..., Xn).

Theorem (Fomin—Zelevinsky '02)

Every cluster variable in A is a Laurent polynomial in x1, .. ., Xp.

Fomin—Zelevinsky's proof is combinatorial; Gross—Hacking—Keel give a
conceptual, geometric proof.



Laurent phenomenon

Fomin—Zelevinsky define a cluster algebra A via recursively computed
generators, called cluster variables, in Q(x, ..., Xn).

Theorem (Fomin—Zelevinsky '02)

Every cluster variable in A is a Laurent polynomial in x1, .. ., Xp.

Fomin—Zelevinsky's proof is combinatorial; Gross—Hacking—Keel give a
conceptual, geometric proof.

Observation (Caldero—Chapoton '06)

Given a frieze with n (interesting) rows, the formulae expressing
arbitrary entries in terms of those in a zig-zag are given by cluster
variables in a cluster algebra of type A,,.

— integrality, starting with a zig-zag of 1s.
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Hyperbolic lengths

Given an ideal polygon in the Poincaré disc, and a collection of
horocycles at the cusps, we can measure the lambda lengths of its
sides and diagonals.

Decorated Teichmiiller space 7,: moduli space of ideal n-gons in the
Poincaré disc, with declared horocycles.
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Flips

Whitehead move / Ptolemy relation:

fli
2

=k .Z

AikAje = NijAke + NigAjk
Flip graph is connected: lambda lengths of arcs in a triangulation
determine all others.
Theorem (Penner, '87)

Each triangulation of the n-gon determines an isomorphism
A T 5 RE3,




Back to SL,-tilings

The lambda lengths of an ideal n-gon

fit into an SLo-tiling (with coefficients).
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The lambda lengths of an ideal n-gon
fit into an SLo-tiling (with coefficients).

A2 A23 A3a Aas As6 Ae7 A7 A1

As6 A67 A7 Mg A12 A23 A3a Aas

The SLy-relations are Ptolemy relations:
AigAi 11 = A1 i1y A1) j+1
and these relations imply all others.

= positivity, starting from a zig-zag of 1s.



Back to SL,-tilings

The lambda lengths of an ideal n-gon with sides of length 1
fit into an SLy-tiling.

Asg A4 A2s5 A6 A7 Asg A6 A7 Asg A4

As7 A6 A1z A2g A13 A2 Ass Aag As7

The SLy-relations are Ptolemy relations:
AijAit1j+1 = Aijp1Aiprj + 1
and these relations imply all others.

—> positivity, starting from a zig-zag of 1s.



Cluster connections

Upshot: an SLy-tiling of width n is an integer point of '7~',,+3.

Cluster interpretation (Gekhtman-Shapiro-Vainshtein '05): 7,3 is the
positive part of a cluster variety of type A,, defined over C.

>0
27

o the totally positive Grassmannian.

The same is true for Gr



Quiver representations
A quiver Q is a directed graph (when it is being used to do algebra).

A representation V' of the quiver is an assignment of a vector space to
each vertex, and a linear map to each arrow.

)
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Quiver representations
A quiver Q is a directed graph (when it is being used to do algebra).

A representation V' of the quiver is an assignment of a vector space to
each vertex, and a linear map to each arrow.

1—2 y
EVARR NV
3
A representation is indecomposable if it is not a non-trivial direct sum.

9

K2 ——> K2

¥ @
PN AT N A TN TN A
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up to isomorphism?
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Classification?

Q: Given a quiver, can we classify its indecomposable representations
up to isomorphism?

A: No! (Usually.) But there are some famous exceptions.

Smith normal form:

Q=1-2: V,=K3K, V,=K—=0, V.=0->K
Jordan normal form: J
n
QZQ: V,,,A:Q forneN, AeK

Theorem (Gabriel)

A connected quiver Q has < oo indecomposable representations up to
isomorphism if and only if it is an orientation of a simply-laced Dynkin
diagram; indecomposables are in bijection with positive roots.




Type A,: string diagrams
Indecomposable representations of A, quivers can be drawn as string
diagrams.
R=1—-2+<3—-4->5
3
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Type A,: string diagrams
Indecomposable representations of A, quivers can be drawn as string

diagrams.
R=1—-2+<3—-4->5

w

VeRKS3KERLKBK= "2
We can describe the entire category rep @ this way.
3
4
\ / 5 \
3
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Counting subrepresentations
For each representation, count the number of subrepresentations
(=down-closed subsets, viewing the string diagram as a poset).

N SN

/NS

N
4/ 5\3
N T

5 4

N
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N
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(=down-closed subsets, viewing the string diagram as a poset).
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Counting subrepresentations

For each representation, count the number of subrepresentations
(=down-closed subsets, viewing the string diagram as a poset).

PR AN

2 11 3

\7/ \8/ \2

N TN S
N NN
2 2 3 2
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We found an SLo-tiling!



The bounded derived category

For V € repQ and i € Z, introduce a formal symbol ¥'V.

Objects of the bounded derived category D" Q are formal direct sums
of these symbols.

Morphisms in D Q are morphisms and extensions from rep Q:
Hompu o(X'V, W) = Extyy '(V, W).

Composition by cup product.



The bounded derived category

For V € repQ and i € Z, introduce a formal symbol ¥'V.

Objects of the bounded derived category D" Q are formal direct sums
of these symbols.

Morphisms in D Q are morphisms and extensions from rep Q:
Hompu o(X'V, W) = Extyy '(V, W).

Composition by cup product.
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Symmetries

DPQ has the autoequivalence ¥: Y¥'V — itV

On morphisms, ¥ is the identity.

Hompu o(X'V, W) = Ext)y '(V, W) = Homp (X V, T/ W),
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DPQ has the autoequivalence ¥: Y¥'V — itV
On morphisms, ¥ is the identity.
Hompu o(X'V, W) = Ext)y '(V, W) = Homp (X V, T/ W),

In type A, the autoequivalence X is a glide reflection, with rep Q as a
fundamental domain.
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A second autoequivalence, 7, acts by translation to the left.



Orbit category
The symmetry ¥~ o 7 is the glide symmetry of an SLo-tiling.
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Definition (Buan—Marsh—Reineke—Reiten—Todorov)

For an acyclic quiver Q, the cluster category Cq is the orbit category
Co:= DbQ/(Z_l oT).
Same objects as D" Q, morphisms

Home, (X, Y) = @) Hompu (X, (X710 7)"Y).
nez




Cluster category

Definition (Buan—Marsh—Reineke—Reiten—Todorov)

For an acyclic quiver Q, the cluster category Cq is the orbit category
Co:= DbQ/(Z_l oT).
Same objects as D" Q, morphisms

Home, (X, Y) = @) Hompu (X, (X1 0 7)"Y).
nez

Remark

See also Caldero—Chapoton—Schiffler for type A.

See also Amiot for non-acyclic quivers.

Many further generalisations: Plamondon, GeiB-Leclerc—Schroer,
Buan—lyama—Reiten—Scott, Jensen—King—Su, Demonet—lyama, P, Wu,
Keller—Wau, ...




Cluster character

The Caldero—Chapoton cluster character formula

CC(X) =XM% 3™ X(Gre(GX))x Be
e<dim GX

computes cluster variables (expressed in a chosen initial cluster) from
(reachable, rigid) indecomposable objects of Cq.



Cluster character

The Caldero—Chapoton cluster character formula

CC(X) =XM% 3™ X(Gre(GX))x Be
e<dim GX

computes cluster variables (expressed in a chosen initial cluster) from
(reachable, rigid) indecomposable objects of Cq.

Key fact: for a triangle 7X — @f-‘zl E; — X, we have

CC(X) CC(7X) Hcc X X

= SL-relation!



SLo-tiling on a cluster category

At x =1, we have

CCX) = Y. x(Gre(GX)),
e<dim GX

which is a (weighted) sum of subrepresentations of GX.

For @ of type A,, and X indecomposable, we even have

CC(X) = #{subrepresentations of GX}.
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e<dim GX

which is a (weighted) sum of subrepresentations of GX.
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CC(X) = #{subrepresentations of GX}.

° 1 ° ° 1 ° ° ° °

AN AN AN AN AN AN AN SN AN

° 1 ° ° ° 1 ° ° °

1
N AN AN AN AN AN AN AN A N A

o 1 . . o 1 . ° .

ﬂ&ﬂ&ﬂ&ﬂ\ﬂ&ﬂ&ﬂ&ﬂ\ﬂ&l

. 1 . . ° 1 . ° °

N AN AN AN AN 2N AN AN AN A
1 . ] ] . 1 . . 1



SLo-tiling on a cluster category

At x =1, we have

CCX) = Y. x(Gre(GX)),
e<dim GX

which is a (weighted) sum of subrepresentations of GX.

For @ of type A,, and X indecomposable, we even have

CC(X) = #{subrepresentations of GX}.
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SLo-tiling on a cluster category

At x =1, we have

which

CCX) = Y. x(Gre(GX)),
e<dim GX

is a (weighted) sum of subrepresentations of GX.

For @ of type A,, and X indecomposable, we even have

CC(X) = #{subrepresentations of GX}.
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SLo-tiling on a cluster category

At x =1, we have

CCX) = Y. x(Gre(GX)),
e<dim GX

which is a (weighted) sum of subrepresentations of GX.

For @ of type A,, and X indecomposable, we even have

CC(X) = #{subrepresentations of GX}.
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