
Week 5: Finding the Tricks

As we found during the discussion in this week’s class, the problem of showing that
n1/n converges to 1 involves some slightly ingenious tricks. It is fairly natural to
wonder how you’re supposed to come up with these ideas, so this week I’ll talk
about that process a little bit, and hopefully demonstrate that it’s not as hard to
come up with a trick as it sometimes looks.

The first trick in this problem is given to us in the question, but I’ll discuss it
anyway — the idea is to write n1/n = 1 + hn. Why do this? Well, after (eventually)
deciding that n1/n > 1, and keeping in mind that we want to show that n1/n gets
close to 1 as n goes to infinity, it is fairly natural to ask how much bigger n1/n is
than 1 for any given n. Of course, this is given by n1/n− 1, so we give this quantity
the name hn (and can now write n1/n = 1 + hn as above). It is then clear that the
problem of showing n1/n → 1 is equivalent to showing that hn → 0.

So how do we do this? Firstly, we should observe that:

(1 + hn)n = n

This is almost the only piece of information that we have about hn, so it seems
sensible to write it down (particularly as we are given the hint that the binomial
theorem will be useful). We found in class that the appropriate trick here is to notice
that all the terms in the binomial formula are positive, and just take the second one,
so we get:

(1 + hn)n ≥ n(n− 1)

2
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Why we should do this is perhaps not obvious, so let’s see how we might arrive at
this conclusion by experimenting. One thing we might try first (as many of you did)
is to use the binomial inequality, and get:

(1 + hn)n ≥ 1 + nhn

The problem with this is that if we rearrange to get a bound on hn, we get:

hn ≤
(1 + hn)n − 1

n
=

n− 1

n
= 1− 1

n
→ 1

But this is no good (we need to bound hn above by something tending to 0), so
how can we fix it? As some of you noticed, it would help to have extra ns on the
denominator. So think about where the binomial inequality comes from — it is
given by throwing away all the terms of the binomial expansion after the first two.
So perhaps we will have more luck if we keep the third term; after all, it contains
an n2. Doing this instead, we get:

(1 + hn)n ≥ 1 + nhn +
n(n− 1)
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But this is also slightly unhelpful, as we now have a quadratic in hn, so this is
going to be difficult to re-arrange. So we need to get rid of one of the hn terms. It
shouldn’t be the h2

n term, or we’re just back where we were before, so throw away
the nhn term instead, and get:

(1 + hn)n ≥ 1 +
n(n− 1)
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Then we can rearrange and find:

h2
n ≤

2 ((1 + hn)n − 1)
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=
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n

n− 1
→ 0

If we were being clever, we could also do what we did in class and throw the 1 away
as well, as it does absolutely nothing useful and just gets in the way, but this is by
no means essential. Either way, we get h2

n → 0. The proof from this point follows a
fairly standard form, so I’ll leave it to you.

It’s important to keep in mind that mathematical proof in general doesn’t follow
any kind of template. It’s a creative process, and you may have to spend some time
thinking about a problem or trying various approaches until it works.

A Warning About Algebra of Limits

It’s important to be careful about which direction the implication in a theorem goes
— getting it backwards can make things go badly wrong. Based on the idea today
that involved using algebra of limits in the wrong direction, I give the following
example of why you should be careful. Say I give you a sequence (xn), and tell you
that x2

n → 1. You might be tempted to say that:

1 = lim
n→∞

(x2
n) = ( lim

n→∞
xn)2

by algebra of limits, so limn→∞ xn = ±1. Unfortunately, this doesn’t work, the prob-
lem being that the sequence xn may not have a limit. For example, let xn = (−1)n.
Then x2

n = 1 for all n, so x2
n → 1, but xn does not converge.

So have we found a counterexample to the algebra of limits theorem? Not at all —
in this context, the theorem says that if xn → `, then x2

n → `2 (note the direction of
the implication), and in our example, there is no such `, so the hypothesis doesn’t
hold and the theorem doesn’t apply.
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